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Solutions — week 1

Exercise 1. (5) The universal property of R'®@p R is that a R-algebra
map out of this to an R-algebra S is the same as a pair of maps of
R-algebras R — S and R — S. It is therefore the coproduct of R
and R’ in the category of R-algebras.

(7) A®y, B is to be interpreted as function on the product of the associ-
ated closed subspaces of A}l and A ®y,, .. ., B as functions on their
intersection in AJ.

Exercise 2. We first expose a proof for sheaves of sets. Let (U;) be an open
cover of X.! Let ¢; : Fiy, — Gy, be a collection of morphisms who agree
on intersection. We show that it lifts uniquely to a morphism of presheaves
F—=G.

Let V be any open of X. Consider s € F(V'). Using that G is a sheaf, that
morphisms agree on intersections, and that ¢; is a morphism of presheaves
for all 4, we get that (p;vnu,(svau,)) lifts uniquely to an element of G(V)
that we denote by ¢y (s). We want to show that (py : F(V) — G(V)) is a
morphism of presheaves. To see that, note that if V/ C V and s € F(V),

def. of ¢
ovi(sv)vio, = eiviou(svin;)

¢ is a morphism of presheaves def. of ¢

eivau;(svau)vinu, = ev(S) v,

so both oy (sy/) and @y (s)ys restrict on V' NU; to the same element. As
G is a sheaf, the desired equality follows. Note that for any V C U; we see
by definition that ¢y = ¢; 7. This shows the existence of the lift.

As for the unicity note that value on s € F(V) of a lift ¢’ necessarily restricts
to (@i, vnu,(svnu;)). Therefore the uniqueness follows from the uniqueness
in the sheaf property of F.2

We answer now a question asked during TA sessions : can we do this with
sheaves with value in an arbitrary category C ¢ The answer is yes and we
will do some preliminary definitions. Note that in the above proof there is
essentialy three steps: one commutative diagram to show the existence, one
to show that this defines a natural transformation, and one argument for the
unicity. The proof below is the same pattern.

IThis case will suffice; for a general open V' we can apply the reasoning to X = V and
F = Fv and g = Q‘V.
2If one now wants to show a similar statement for sheaves of abelian groups/rings/etc.
one can now argue that to verify that a morphism of presheaves of sets is a morphism of
presheaves of abelian groups/rings/etc. it suffices to check it at stalks/locally, which will
hold because by construction it will already hold locally.
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Let C be a complete category. A sheaf F on X with values in C is a presheaf
such that for any open U of X and open covering (U;) of U, the following®

FU) — [LF(U) —= H” F(Uij)

is an equalizer diagram. We denote by Sh¢(X) the full subcategory of
Pshe(X) = Fun(Ouv(X)°,C) consisting of sheaves with values in C.
Now we define the Set-valued presheaf

U +— Homgy,. ) (Fu, Gu)

Now we want to show that this pre-sheaf is a sheaf, if we make the hypothesis
that G is a sheaf. To show this, take (U;);e; an open cover of U € Ouv X
and a collection of natural transformations

(ai: 'FU«; - gUi)iEI

such that for all 4,5 € I and W C U;;

(1) (afy: F(W) = G(W)) = (o : F(W) = G(W)).

We need to show that there is a unique natural transformation a: Fyy — Gy
such that restricting this natural transformation to a U; gives «;.
Let V C U be open. By the universal property of the product, let :

By : F(V) = [[o(vnun)

el
induced by

Ay,
) 7

F(V) = F(VNU; GV NU).

Now we want to consider ay: F(V) — G(V) the unique morphism who
would be given the universal property of the following equalizer (because
G is a sheaf) for the cover of V being (V N U;);. Note that if V' C U;, by
construction, we will have ay = oc%/.

1 &‘
Oévl

G(V) — TLies GV NU) 3 1, 6(V N Uy)

To see that this works, we need to show that 8y commutes indeed in this
diagram.

This holds, because of the commutative the diagram below, who commutes
because F and G are functors, that a', o/ are natural transformations and

. ) _ J
that using (1) we have Ay, = o,

3with the two maps being on component (4, ) once II, F(Ux) = F(U;) = F(Ui;) and
I1, F(Ux) = F(U;) = F(Usj) the other time



FV) —— FVNU)

| l%y

FVNU;) — F(VNUy)

j\‘
Xy,

’ g(VﬂUj)

Q(V’ﬁljﬁ)

So ay: F(V) — G(V) is indeed well defined.

We claim that (ay : F(V) — G(V))ycv is a natural transformation lifting
the collection above.

We show that & is natural. This mean we have to show that the following
diagram commutes.

F(V) —— F(V')
g(v) — 6(v")

By the universal property of the equalizer (using again that G is a sheaf), it
amounts to prove the commutativity of,

FV) — F(V') — v
G(V) — (V') —— I, (V' nU;)

So using the universal property of the product, we need only to verify that
for every i :

FV) — F(V) —Y 5 v — S LGV NU)

/| |

gv) — G(V') — [,V nU;) —— g(V' nUy)

Q)

commutes. But this holds because we can insert commutating diagrams
inside the diagram above in the following way :

FV) — 5 FV) — Y G —— S LGV N

\\

FVNU) —— FV' N

o a%
gvnu)
/ \

GV) —— g(V') —— [Lo(V'nU;) —— (V' ny)
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The intermediate diagrams commute because of the functoriality of F and
G, the naturality of o’ and the definition of a. R

The unicity of the lift is left to show. Suppose that o’ is a lift. Then for any
V, and ¢ € I we have the following commutative diagram.

FV) —— FVNU;)

~ i
a’vi lanUi

Gg\V) —— Gg(vnuy)

Therefore we see that by universal property of G(V') as an equalizer with
respect to the sheaf property and the cover (U; NV); of V that o/y = ay.

Exercise 3. Let S be a set and X a topological space. In what follows we
prove that on a connected open subspace U the canonical map S — S(U)
is a bijection. We use the following description

SWU)={(ss) e [[SIVzeX W2z VyyecU s,=s}
zeX

and the natural map S — S(U) being the diagonal. Let (¢;) € S(U). Fix
y € U (connected implies non empty). Now note that

Vi={zeUlty=t,} Va={oeU|ts#t,}

form a disjoint decomposition of U into open subspaces. As U is connected
and y € V7 we get Vo = () and the claim follows.

Now, as any subset U of the real line is a disjoint union of connected open
subsets (which is also true for any locally connected space), we get that
Q) = Hwo(U) Q using the sheaf property. This vector space is finite dimen-
sional when U has finitely many connected components and the dimension
is then equal to 7o (U).

Exercise 4. (2) Everything in what follows works for a presheaf. Note
first of all that any s € F(V') the map s: V — | F| defined by = — s,
is a section of p : | F| — X. Note also that

sS(V)={sz |z €V}

is open. Indeed, we need to show by definition of the topology that
for any V' open and t € F(V')

tIEWV) ={z e VNV |s, =ts}

is open. This follows from the following lemma about directed col-
imits.*

Lemma. Let (A;) be a directed system of sets and lim, A; the colimit.
If a; € A; and aj € Aj coincide in the colimit, then there exists k

with 1 — k and j — k with the image of a; and a; being the same in
Ag.

4As forgetful functors to sets from abelian groups or rings commute with directed
colimits, this lemma also applies to directed colimits of abelian groups, rings.
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Proof. One checks that the colimit is given by the quotient of | |, A;
by the relation (a; € A;) ~ (a; € A;) if and only if there exist i — k&
and j — k with a; and a; identified in Ag. Once this understood,
the lemma follows. U

Now, it follows that p : |F| — X is continuous. Indeed for an
open set U of X we have

= || s

(s,V),s€F(V)

Also, we see that for any open V' and s € F(V) we have pjg)s =
idy and spjgy) = idgy). Therefore p is a local homeomorphism.
Remark. We have a natural isomorphism between F, — F*. (Here F,
denotes the sheaf of sections of p : |F| — X.)

Exercise 5. To show that 7 — F T is an isomorphism at stalks, we proceed
as follows. Note that for any open U > x the following projection map

Fruo)c [ 7= %

zelU
will pass to the colimit (F*), — F,. One immediately checks that this is
an inverse to the induced map at stalks from F — FT.
For (2) and "not injective” we can take the presheaf on R with value Z/27Z
on R and 0 for any other open.
For ”"not surjective”, take R and the sheafification of any non-zero abelian
group. See ”constant” sheaf exercise 3.

Exercise 6. (1) Note that e : [0,2] — S! is a local homeomorphism.

We claim that the natural evaluation map
(Fo). 22 e7(2)

is a bijection.” Let z € e”!(2). Let U > Z such that ey is an
|U1
are sections on say V' 3 Z and V' 3 z which have the same value on z,
say x, then take an open U > x such that e|;; is an homoemoprhism
and e(U) C VNV'. Then s|¢yy and tj.gr are both the unique inverse
to ejy. This shows the injectivity.

(2) We show that O, is a local R-algebra. We claim that the ideal
{f€0:1f(2) =0}

is the unique maximal ideal. To this end, it suffices to show that
the complement consits of the invertible elements. If f(z) # 0, then
there exists a neighbourghood of z where f never vanishes. Therefore
1 is a well defined multiplicative inverse in the stalk.

Some setup and notations for the rest of the exercise.

homeomorphism. Then e, (z) = z. This shows surjectivity. If s,t

(a) To avoid confusion, we write the complex number e(0) =e(1) =1 €

St by w.

®Note that the following argument holds true for any local homeomorphism e : X — Y.



(b) Denote by e: [0,1] — S! the quotient map given by exp(2mi—).
(¢) The quotient map p: [0,1] x R — M gives an homeomorphism
p: (0,1) xR = 77 1(S1\ w).

(d) The quotient map p: [0,1] x R — M gives an homeomorphism

1
75] XR— ﬂ-il(5§0)a
where Sio denotes the points of the circle with imaginary part pos-

itive or zero.
(e) The quotient map p: [0,1] x R — M gives an homeomorphism

p: [0

1 _
p: [5:1) x R = 77 (k),
where Séo denotes the points of the circle with imaginary part neg-
ative or zero.

Let s € L(U) be a section. We define a continuous map ay: e 1(U) — R
such that

s(e(t)) = [e(t), as(t)]-
For t # 0,1, we define a,(t) to be the second component of p~!(s(e(t))), by

(c) above. When t = 0 and ¢ = 1, we extend by continuity and the same
method using the points (d) and (e) respectively. Note that

as(0) = —ag(1)
because s(u) = [0, as(0)] = [1, as(1)].

(3) We define a module structure. We explain how to define the mul-
tiplication by scalars, the others operations being defined similarly.
Let U be any open of M. Let f € O(U) and s € L(U). We define
f - s as follows. We pass to the quotient map e: [0,1] — S!, the
following continuous map [0,1] — M

e [t f(e(t))as(t))]-

To show that it passes to the quotient we have to show that it agrees
ont=0andt=1. But as

fu)as(0) = f(u)(—as(1)) = —f(u)as(1),

this follows from the quotient relation of the M&bius band.
The zero element is the section sg : St — M, so(e(t)) = [t,0].
One continue similarly to define the rest of the structure. The
key is that the “gluing of the quotient” (—1): R — R is an automor-
phism of R-modules so that we can “lift” calculations to pointwise
calculations in [0,1] x R. That’s why we put the emphasis on that
in the above calculation.
(4) For any section s € £L(U) we have the unique map

OIU — £|U

that respects the module structure on each open subset of U and
sends 1 to s. We claim that if s vanishes nowhere, then this map is
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an isomorphism. To prove that, we suppose that s vanishes nowhere,
and construct an homeomorphism over U

Ye: m HU) = U xR
defined by [t, \] — (e(t), —2= ). This is well defined by non-vanishing.

7?(15)

The inverse is given by (z,A) — (X - s)(z), where - designates the
module structure defined above. Now

p?"gws(—): £|U — O\U
gives an inverse to the above map.

We are now left to prove that on any open subset missing a point
U, there exist a non-vanishing section. But whenever a point is
missing, say e(tp) ¢ U for some ty € [0,1) then we can define the
section U — M by

o) s {[t,l] t <t

[t,—1] t >t

which vanishes nowhere.

(5) Let s € £(S'). By the intermediate value theorem ay: [0,1] — R
necessarily vanishes because a5(0) = —as(1).

(6) Note that a section s € L(U) vanishes at z = e(t) in the sense that
s(z) = [t,0] if and only if s, € m.L,. Note that 1 € O(S') vanishes
on no point. By contradiction, the image of 1 by an isomorphism
O = £ would not vanish at any stalk, in contradiction with the
previous point.



