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Exercise 1. (5) The universal property of R′⊗RR
′′ is that a R-algebra

map out of this to an R-algebra S is the same as a pair of maps of
R-algebras R′ → S and R → S. It is therefore the coproduct of R
and R′ in the category of R-algebras.

(7) A⊗kB is to be interpreted as function on the product of the associ-
ated closed subspaces of An

k and A⊗k[x1,...,xn]B as functions on their
intersection in An

k .

Exercise 2. We first expose a proof for sheaves of sets. Let (Ui) be an open
cover of X.1 Let φi : FUi → GUi be a collection of morphisms who agree
on intersection. We show that it lifts uniquely to a morphism of presheaves
F → G.
Let V be any open of X. Consider s ∈ F(V ). Using that G is a sheaf, that
morphisms agree on intersections, and that φi is a morphism of presheaves
for all i, we get that (φi,V ∩Ui(sV ∩Ui)) lifts uniquely to an element of G(V )
that we denote by φV (s). We want to show that (φV : F(V ) → G(V )) is a
morphism of presheaves. To see that, note that if V ′ ⊂ V and s ∈ F(V ),

φV ′(sV ′)|V ′∩Ui

def. of φ
= φi,V ′∩Ui

(sV ′∩Ui
)

φ is a morphism of presheaves
= φi,V ∩Ui(sV ∩Ui)|V ′∩Ui

def. of φ
= φV (s)|V ′∩Ui

so both φV ′(sV ′) and φV (s)V ′ restrict on V ′ ∩ Ui to the same element. As
G is a sheaf, the desired equality follows. Note that for any V ⊂ Ui we see
by definition that φV = φi,V . This shows the existence of the lift.
As for the unicity note that value on s ∈ F(V ) of a lift φ′ necessarily restricts
to (φi,V ∩Ui(sV ∩Ui)). Therefore the uniqueness follows from the uniqueness
in the sheaf property of F .2

We answer now a question asked during TA sessions : can we do this with
sheaves with value in an arbitrary category C ? The answer is yes and we
will do some preliminary definitions. Note that in the above proof there is
essentialy three steps: one commutative diagram to show the existence, one
to show that this defines a natural transformation, and one argument for the
unicity. The proof below is the same pattern.

1This case will suffice; for a general open V we can apply the reasoning to X = V and
F = F|V and G = G|V .

2If one now wants to show a similar statement for sheaves of abelian groups/rings/etc.
one can now argue that to verify that a morphism of presheaves of sets is a morphism of
presheaves of abelian groups/rings/etc. it suffices to check it at stalks/locally, which will
hold because by construction it will already hold locally.
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Let C be a complete category. A sheaf F on X with values in C is a presheaf
such that for any open U of X and open covering (Ui) of U , the following3

F(U)
∏

iF(Ui)
∏

i,j F(Uij)

is an equalizer diagram. We denote by ShC(X) the full subcategory of
PshC(X) = Fun(Ouv(X)op, C) consisting of sheaves with values in C.
Now we define the Set-valued presheaf

U 7→ HomShC(U)(FU ,GU )

Now we want to show that this pre-sheaf is a sheaf, if we make the hypothesis
that G is a sheaf. To show this, take (Ui)i∈I an open cover of U ∈ OuvX
and a collection of natural transformations

(αi : FUi → GUi)i∈I

such that for all i, j ∈ I and W ⊂ Uij

(αi
W : F(W ) → G(W )) = (αj

W : F(W ) → G(W )).(1)

We need to show that there is a unique natural transformation α̂ : FU → GU

such that restricting this natural transformation to a Ui gives αi.
Let V ⊂ U be open. By the universal property of the product, let :

βV : F(V ) →
∏
i∈I

G(V ∩ Ui)

induced by

F(V ) → F(V ∩ Ui)
αi
V ∩Ui−−−−→ G(V ∩ Ui).

Now we want to consider α̂V : F(V ) → G(V ) the unique morphism who
would be given the universal property of the following equalizer (because
G is a sheaf) for the cover of V being (V ∩ Ui)i. Note that if V ⊂ Ui, by
construction, we will have α̂V = αi

V .

F(V )

G(V )
∏

i∈I G(V ∩ Ui)
∏

i,j G(V ∩ Uij)

βV
α̂V

To see that this works, we need to show that βV commutes indeed in this
diagram.
This holds, because of the commutative the diagram below, who commutes
because F and G are functors, that αi, αj are natural transformations and

that using (1) we have αi
V ∩Uij

= αj
V ∩Uij

.

3with the two maps being on component (i, j) once
∏

k F(Uk) → F(Ui) → F(Uij) and∏
k F(Uk) → F(Uj) → F(Uij) the other time
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F(V ) F(V ∩ Ui)

F(V ∩ Uj) F(V ∩ Uij) G(V ∩ Ui)

G(V ∩ Uj)

G(V ∩ Uij)

αi
V ∩Ui

αj
V ∩Uj

αi
V ∩Uij

=αj
V ∩Uij

So α̂V : F(V ) → G(V ) is indeed well defined.
We claim that (α̂V : F(V ) → G(V ))V⊂U is a natural transformation lifting
the collection above.
We show that α̂ is natural. This mean we have to show that the following
diagram commutes.

F(V ) F(V ′)

G(V ) G(V ′)

α̂V α̂V ′

By the universal property of the equalizer (using again that G is a sheaf), it
amounts to prove the commutativity of,

F(V ) F(V ′) G(V ′)

G(V ) G(V ′)
∏

i G(V ′ ∩ Ui)

α̂V

α̂V ′

So using the universal property of the product, we need only to verify that
for every i :

F(V ) F(V ′) G(V ′)
∏

i G(V ′ ∩ Ui)

G(V ) G(V ′)
∏

i G(V ′ ∩ Ui) G(V ′ ∩ Ui)

α̂V

α̂V ′

commutes. But this holds because we can insert commutating diagrams
inside the diagram above in the following way :

F(V ) F(V ′) G(V ′)
∏

i G(V ′ ∩ Ui)

F(V ∩ Ui) F(V ′ ∩ Ui)

G(V ∩ Ui)

G(V ) G(V ′)
∏

i G(V ′ ∩ Ui) G(V ′ ∩ Ui)

α̂V

α̂V ′

αi
V ∩Ui αi

V ′∩Ui
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The intermediate diagrams commute because of the functoriality of F and
G, the naturality of αi and the definition of α̂.

The unicity of the lift is left to show. Suppose that α̂′ is a lift. Then for any
V , and i ∈ I we have the following commutative diagram.

F(V ) F(V ∩ Ui)

G(V ) G(V ∩ Ui)

α̂′
V

αi
V ∩Ui

Therefore we see that by universal property of G(V ) as an equalizer with

respect to the sheaf property and the cover (Ui ∩ V )i of V that α̂′
V = α̂V .

Exercise 3. Let S be a set and X a topological space. In what follows we
prove that on a connected open subspace U the canonical map S → S(U)
is a bijection. We use the following description

S(U) = {(sx) ∈
∏
x∈X

S | ∀x ∈ X ∃U ∋ x ∀y, y′ ∈ U sy = sy′}

and the natural map S → S(U) being the diagonal. Let (tx) ∈ S(U). Fix
y ∈ U (connected implies non empty). Now note that

V1 = {x ∈ U | tx = ty} V2 = {x ∈ U | tx ̸= ty}

form a disjoint decomposition of U into open subspaces. As U is connected
and y ∈ V1 we get V2 = ∅ and the claim follows.
Now, as any subset U of the real line is a disjoint union of connected open
subsets (which is also true for any locally connected space), we get that
Q(U) =

∏
π0(U)Q using the sheaf property. This vector space is finite dimen-

sional when U has finitely many connected components and the dimension
is then equal to π0(U).

Exercise 4. (2) Everything in what follows works for a presheaf. Note
first of all that any s ∈ F(V ) the map ŝ : V → |F| defined by x 7→ sx
is a section of p : |F| → X. Note also that

ŝ(V ) = {sx | x ∈ V }

is open. Indeed, we need to show by definition of the topology that
for any V ′ open and t ∈ F(V ′)

t̂−1(ŝ(V )) = {x ∈ V ∩ V ′ | sx = tx}

is open. This follows from the following lemma about directed col-
imits.4

Lemma. Let (Ai) be a directed system of sets and lim−→i
Ai the colimit.

If ai ∈ Ai and aj ∈ Aj coincide in the colimit, then there exists k
with i→ k and j → k with the image of ai and aj being the same in
Ak.

4As forgetful functors to sets from abelian groups or rings commute with directed
colimits, this lemma also applies to directed colimits of abelian groups, rings.
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Proof. One checks that the colimit is given by the quotient of
⊔

iAi

by the relation (ai ∈ Ai) ∼ (aj ∈ Aj) if and only if there exist i→ k
and j → k with ai and ak identified in Ak. Once this understood,
the lemma follows. □

Now, it follows that p : |F| → X is continuous. Indeed for an
open set U of X we have

p−1(U) =
⊔

(s,V ),s∈F(V )

ŝ(V ).

Also, we see that for any open V and s ∈ F(V ) we have p|ŝ(V )ŝ =
idV and ŝp|ŝ(V ) = idŝ(V ). Therefore p is a local homeomorphism.

Remark. We have a natural isomorphism between Fp → F+. (Here Fp

denotes the sheaf of sections of p : |F| → X.)

Exercise 5. To show that F → F+ is an isomorphism at stalks, we proceed
as follows. Note that for any open U ∋ x the following projection map

F+(U) ⊂
∏
x∈U

Fx → Fx

will pass to the colimit (F+)x → Fx. One immediately checks that this is
an inverse to the induced map at stalks from F → F+.
For (2) and ”not injective” we can take the presheaf on R with value Z/2Z
on R and 0 for any other open.
For ”not surjective”, take R and the sheafification of any non-zero abelian
group. See ”constant” sheaf exercise 3.

Exercise 6. (1) Note that e : [0, 32 ] → S1 is a local homeomorphism.
We claim that the natural evaluation map

(Fe)z
evz−−→ e−1(z)

is a bijection.5 Let x ∈ e−1(z). Let U ∋ Z such that e|U is an

homeomorphism. Then e−1
|U (z) = x. This shows surjectivity. If s, t

are sections on say V ∋ Z and V ′ ∋ z which have the same value on z,
say x, then take an open U ∋ x such that e|U is an homoemoprhism
and e(U) ⊂ V ∩V ′. Then s|e(U) and t|e(U) are both the unique inverse
to e|U . This shows the injectivity.

(2) We show that Oz is a local R-algebra. We claim that the ideal

{f ∈ Oz | f(z) = 0}
is the unique maximal ideal. To this end, it suffices to show that
the complement consits of the invertible elements. If f(z) ̸= 0, then
there exists a neighbourghood of z where f never vanishes. Therefore
1
f is a well defined multiplicative inverse in the stalk.

Some setup and notations for the rest of the exercise.

(a) To avoid confusion, we write the complex number e(0) = e(1) = 1 ∈
S1 by u.

5Note that the following argument holds true for any local homeomorphism e : X → Y .
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(b) Denote by e : [0, 1] → S1 the quotient map given by exp(2πi−).
(c) The quotient map p : [0, 1]× R →M gives an homeomorphism

p : (0, 1)× R → π−1(S1 \ u).

(d) The quotient map p : [0, 1]× R →M gives an homeomorphism

p : [0,
1

2
]× R → π−1(S1

≥0),

where S1
≥0 denotes the points of the circle with imaginary part pos-

itive or zero.
(e) The quotient map p : [0, 1]× R →M gives an homeomorphism

p : [
1

2
, 1]× R → π−1(S1

≤0),

where S1
≤0 denotes the points of the circle with imaginary part neg-

ative or zero.

Let s ∈ L(U) be a section. We define a continuous map αs : e
−1(U) → R

such that

s(e(t)) = [e(t), αs(t)].

For t ̸= 0, 1, we define αs(t) to be the second component of p−1(s(e(t))), by
(c) above. When t = 0 and t = 1, we extend by continuity and the same
method using the points (d) and (e) respectively. Note that

αs(0) = −αs(1)

because s(u) = [0, αs(0)] = [1, αs(1)].

(3) We define a module structure. We explain how to define the mul-
tiplication by scalars, the others operations being defined similarly.
Let U be any open of M . Let f ∈ O(U) and s ∈ L(U). We define
f · s as follows. We pass to the quotient map e : [0, 1] → S1, the
following continuous map [0, 1] →M

t 7→ [t, f(e(t))αs(t))].

To show that it passes to the quotient we have to show that it agrees
on t = 0 and t = 1. But as

f(u)αs(0) = f(u)(−αs(1)) = −f(u)αs(1),

this follows from the quotient relation of the Möbius band.
The zero element is the section s0 : S

1 →M , s0(e(t)) = [t, 0].
One continue similarly to define the rest of the structure. The

key is that the “gluing of the quotient” (−1) : R → R is an automor-
phism of R-modules so that we can “lift” calculations to pointwise
calculations in [0, 1] × R. That’s why we put the emphasis on that
in the above calculation.

(4) For any section s ∈ L(U) we have the unique map

O|U → L|U

that respects the module structure on each open subset of U and
sends 1 to s. We claim that if s vanishes nowhere, then this map is
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an isomorphism. To prove that, we suppose that s vanishes nowhere,
and construct an homeomorphism over U

ψs : π
−1(U) → U × R

defined by [t, λ] 7→ (e(t), λ
αs(t)

). This is well defined by non-vanishing.

The inverse is given by (z, λ) 7→ (λ · s)(z), where · designates the
module structure defined above. Now

pr2ψs(−) : L|U → O|U

gives an inverse to the above map.
We are now left to prove that on any open subset missing a point

U , there exist a non-vanishing section. But whenever a point is
missing, say e(t0) ̸∈ U for some t0 ∈ [0, 1) then we can define the
section U →M by

e(t) 7→

{
[t, 1] t < t0

[t,−1] t > t0

which vanishes nowhere.
(5) Let s ∈ L(S1). By the intermediate value theorem αs : [0, 1] → R

necessarily vanishes because αs(0) = −αs(1).
(6) Note that a section s ∈ L(U) vanishes at z = e(t) in the sense that

s(z) = [t, 0] if and only if sz ∈ mzLz. Note that 1 ∈ O(S1) vanishes
on no point. By contradiction, the image of 1 by an isomorphism
O ∼= L would not vanish at any stalk, in contradiction with the
previous point.


